The State of Computers and DataStorage at the End of Moore's Law

Definition

Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in production.

The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor and Intel (and former CEO of the latter), who in 1965 posited a doubling every year in the number of components per integrated circuit, ${ }^{[a]}$ and projected this rate of growth would continue for at least another decade. In 1975, looking forward to the next decade, he revised the forecast to doubling every two years, a compound annual growth rate (CAGR) of 41%. While Moore did not use empirical evidence in forecasting that the historical trend would continue, his prediction held since 1975 and has since become known as a "law".

- Source: $\underline{h t t p s: / / e n . w i k i p e d i a . o r g / w i k i / M o o r e \% 27 s ~ l a w ~}$

Moore's Law \& The Future of Humanity

Integrated circuits (ICs) for computing and data storage are massively important for the future of humanity
Such circuits enable all aspects of modern life
Without ICs the world would not have been able to progress its economies much beyond the level we had in the 1960s before the invention of these circuits
Nearly everything we currently produce from physical goods to informational services make use of ICs directly or indirectly
Indeed, how far humanity can progress its economies critically depends on further advances in making ICs
That is why Moore's Law matters and why it is worth investigating 1) when we can no longer squeeze more transistors into a circuit and 2) how advanced the ICs will be in the end

The Evidence

Moore's Law: The number of transistors on microchips doubles every two years Our World Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world's largest problems.
Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

- Source: https://en.wikipedia.org/wiki/Moore\'s_law\#/media/File:Moore's_Law_Transistor_Count_1970-2020.png

Proprietary. © H. Mathiesen. This material can be used by others free of charge provided that the author H. Mathiesen is attributed and a clickable link is made visible to the location of used material on www.hmexperience.dk

Calculating growth rate from evidence

Some State-of-the-art ICs

IC Name	Year	IC type \& nm fabrication tech	Billion transistors	Million transistors /mm2	Processing speed per watt
A15 bionic by Apple for use in iPhone 13 Pro	2021	SoC, 5 nm (SystemOnChip), 1 die	15	$\begin{array}{r} 138.9 \\ =15,000 / 108 \end{array}$	$\begin{array}{r} 0.18 \\ =1.5 \text { TFLOPS/8.5W } \\ \text { FP32/TDP (PL1) } \end{array}$
M1 Ultra by Apple for desktop and notebook use	2022	SoC, 5 nm (SystemOnChip), 4 dies	114	$\begin{array}{r} 131.9 \\ =114,000 / 864 \end{array}$	$\begin{array}{r} 0.35 \\ =21.2 \mathrm{TFLOPS} / 60 \mathrm{~W} \\ \text { FP32/TDP (PL1) } \end{array}$
H100 by Nvidia for Graphics and Al use	2022	GPU, 4nm (Graphics prosessing Unit), 1 die	80	$\begin{array}{r} 98.3 \\ =80,000 / 814 \end{array}$	$\begin{array}{r} 0.096 \\ =67 \text { TFLOPS } / 700 \mathrm{~W} \\ \text { FP32/TDP (?) } \end{array}$
D1 (Dojo) by Tesla specifically for Al use	2022	NPU, 7nm (Neural processing Unit), 1 die	50	$\begin{array}{r} 77.5 \\ =50,000 / 645 \end{array}$	$\begin{array}{r} 0.057 \\ =22.6 / 400 \mathrm{~W} \\ \text { FP32/TDP (?) } \end{array}$
Wafer Scale Engine 2 by Cerebras for AI	2020	NPU 7nm (Neural processing Unit) 1 die	2,600	$\begin{array}{r} 56.2 \\ =2,600,000 / 46,225 \end{array}$	$\begin{array}{r} 0.021 \\ =503 \mathrm{TFLOPS} / 23000 \mathrm{~W} \end{array}$
V-NAND 3D chip by Micron used in MicroSD cards \& SSDs (16Tbit=2TByte 2,666B transistors/TB)	2022	Flash memory 3D stacked chip, 232 layers per die, 16 dies stacked = 3712 layers in total, likely 16 nm because 21 /layer	5,333	$\begin{array}{r} 77,900 \\ =5,333,000 / 68.5 \\ 21.0 \text { per layer } \\ =77,900 / 3,712 \end{array}$	NA

Sources for previous table

- Apple A15: https://en.wikipedia.org/wiki/Apple silicon
- and https://www.cpu-monkey.com/en/cpu-apple a15 bionic 5 gpu
- Apple M1 Ultra (64 Core): https://en.wikipedia.org/wiki/Apple silicon\#Apple M1 Ultra
- And https://www.cpu-monkey.com/en/igpu-apple m1 ultra 64 core-317
- And https://www.cpu-monkey.com/en/cpu-apple m1 ultra 64 gpu
- H100 by Nvidia: https://www.nvidia.com/en-us/data-center/h100/
- and https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
- and https://www.guru3d.com/news-story/nvidia-will-manufacture-h100-gpus-using-tsmc-4-nm-process.html
- D1 (Dojo) by Tesla: https://www.youtube.com/watch?v=ODSJsviD SU\&t=2566s (2:09:55)
- Wafer Scale Engine 2: https://f.hubspotusercontent30.net/hubfs/8968533/WSE-2\ Datasheet.pdf
- And https://www.marktechpost.com/2022/05/03/totalenergies-utilize-the-cerebras-cs-2-system-to-turn-an-ai-problem-long-accepted-to-be-memory-bound-into-compute-bound/
- V-NAND chip by Micron: https://en.wikipedia.org/wiki/Transistor count
- and https://www.anandtech.com/show/17509/microns-232-layer-nand-now-shipping

Context: Ignots and Wafers

The silicon wafer as the material of semiconductor devices

- Sources: https://www.sumcosi.com/english/products/about.html
- And https://en.wikipedia.org/wiki/Wafer_(electronics)

Context: Wafer size and die cuts

Wafer size	Typical thickness \uparrow	Year introduced ${ }^{[13]}$ -	Weight per wafer $\stackrel{\rightharpoonup}{*}$	$100 \mathrm{~mm} 2(10 \mathrm{~mm})$ Die per wafer [hide] $\hat{*}^{\text {is }}$
1-inch (25 mm)		1960		
2-inch (51 mm)	275 mm	1969		9
3-inch (76 mm)	$375 \mu \mathrm{~m}$	1972		29
4-inch (100 mm)	$525 \mu \mathrm{~m}$	1976	10 grams ${ }^{\text {[18] }}$	56
4.9 inch (125 mm)	$625 \mu \mathrm{~m}$	1981		95
150 mm (5.9 inch, usually referred to as "6 inch")	$675 \mu \mathrm{~m}$	1983		144
200 mm (7.9 inch, usually referred to as "8 inch")	$725 \mu \mathrm{~m}$.	1992	53 grams ${ }^{\text {[18] }}$	269
300 mm (11.8 inch, usually referred to as "12 inch")	$775 \mu \mathrm{~m}$	2002	125 grams ${ }^{[18]}$	640
450 mm (17.7 inch) (proposed) ${ }^{[19]}$	$925 \mu \mathrm{~m}$	- -	342 grams ${ }^{\text {[18] }}$	1490
675 -millimetre (26.6 in) (theoretical) ${ }^{[20]}$	unknown	-	unknown	3427

- Source: https://en.wikipedia.org/wiki/Wafer_(electronics)

Proprietary. © H. Mathiesen. This material can be used by others free of charge provided that the author H. Mathiesen is attributed and a clickable link is made visible to the location of used material on www.hmexperience.dk

Context: Mono-die and Multi-die

Q Next generations after M1 Max

Monolithic die
\&́ M1 Max Duo

Multi-die MCM
́M1Ultra

Chiplet

- Source: https://twitter.com/frederic_orange?lang=en

The 2TB micro sd card: Mass market 2023

September 27, 2022 10:36 PM Eastern Daylight Time

TOKYO--(BUSINESS WIRE)--Kioxia Corporation, a world leader in memory solutions, today announced the industry's first ${ }^{[1]} 2$ terabyte (TB) microSDXC memory card working prototypes. Using its innovative BiCS FLASH ${ }^{\top M} 3 \mathrm{D}$ flash memory and an in-house designed controller, basic functions of the KIOXIA 2TB microSDXC UHS-I memory card working prototypes were confirmed in the microSDXC standard's maximum density.

As the data recording capacity of smartphones, action cameras, and portable game consoles continues to increase, the need for ultrahigh capacity SD memory cards to store all of this data has never been higher. The SD Association's SDXC specification has supported memory cards up to 2TB for more than a decade - but 2TB cards have not been successfully manufactured until now.

Designed using the company's proprietary manufacturing technology, the KIOXIA 2 TB card working prototypes are built by stacking sixteen 1 terabit dies of 3D flash memory and achieve a maximum thickness of 0.8 mm at the die mounting area - making them wellsuited to high-capacity data recording applications.

Mass production of the KIOXIA 2TB microSDXC memory cards is scheduled to begin in 2023.

- Source: https://www.businesswire.com/news/home/20220927006137/en/Kioxia-Develops-Industry\�\�\�s-First-2TB-microSDXC-Memory-Card-WorkingPrototypes\#:~:text=Mass\ production\ of\ the\ KIOXIA,scheduled\ to\ begin\ in\ 2023.\&text=\[1\]\ As\ of\ September\ 28\%2C\% Prototyp

202022.

Proprietary. © H. Mathiesen. This material can be used by others free of charge provided that the author H. Mathiesen is attributed and a clickable link is made visible to the location of used material on www.hmexperience.dk

Data storage ICs not compute ICs are the king of transistor density

In 1965 and 1975 when Moore stated his "Law" transistor based ICs for long-term data storage did not exist
Today data storage ICs are obviously the king of transistors per IC so we need to redo calculation including those to check Moore's Law
State-of-the-art 2TB micro sd cards with 5.3 trillion transistors (using the Micron 16 dies chiplet) will go into mass production in 2023
From 1971 to 2023 is $\mathbf{5 2}$ years
The compounded annual growth rate (CAGR) can thus be calculated as $\left((5,333,000,000,000 / 5000)^{\wedge}(1 / 52)\right)-1=0.491$
In percentage growth per year 49.1\%
Growth in $\mathbf{2}$ years is calculated as
$\mathbf{1}^{*}(1+0.491)^{\wedge} \mathbf{2}=\mathbf{2} .224$. If $\mathbf{1 0}$ years you get 54.470
$C A G R=\left(\frac{E V}{B V}\right)^{\frac{1}{n}}-1$
where:
$E V=$ Ending value
$B V=$ Beginning value
$n=$ Number of years
2.224 is still about 2 so Moore's law is spot on with a doubling every second year in transistors per chip. Note at 10 years differences are big

When Will Moore's Law End?

Moore's Law will end when we can no longer shrink the size of transistors build on ICs

Obviously transistors cannot be any smaller than the size of the atoms they are made of

So the questions become 1) how big are the atoms used to make transistors and 2) how many atoms do we need to make a functioning transistor currently and at the end of Moore's Law?

Context: Size of atoms used for IC making by nm

Atom / element	Size of atom in nm	\# of atoms to fit within 1 nm		
Silicon	0.220 nm			$5=1 / 0.22$
Hydrogen	(smallest of all atoms) 0.050 nm	$20=1 / 0.05$		
Cesium	(largest of all atoms) 0.520 nm	$2=1 / 0.52$		

Asked at Quora.com: What are other elements used in chip making other than silicon?

Sang Dhong Follow
Ph.D electrical engineering with minors in computer sciences and physics. Updated Feb 20
The short answer to your question is that, as of now (circa 2021), almost all the elements except radio-active elements and man-made elements (a.k.a. synthetic elements) are used in one way or another in chip making. As we can see in the last figure, the only unused elements excluding radioactive ones are: lithium (Li), neon (Ne), sodium (Na), rubidium (Rb), iodine (I) , and cesium (Cs).

It is given that Si, Ge, and GaAs , and GaP are most widely used semiconductors currently used. However, for manufacturing integrated chips, many more elements are used, not so much as Si, etc., but surely without them, integrated chips may not function or we would not be able to manufacture chips with high enough performance we are currently seeing.

Si=Silicon
Ge=Germanium GaAs=Gallium Arsenic
GaP=Gallium Phosphorus

Sources for previous table

- Size of any atom: https://en.wikipedia.org/wiki/Atomic radii of the elements (data page) (I use the reported empirial radius*2 and translated to nm)
- Quora.com: https://www.quora.com/What-are-other-elements-used-in-chip-making-other-than-silicon

Context: nm and transistor densities

2021 Peak Quoted Transistor Densities (MTr/mm2)				
AnandTech Process Name	IBM	TSMC	Intel	Samsung
22nm			16.50	
$16 \mathrm{~nm} / 14 \mathrm{~nm}$		28.88	44.67	33.32
10 nm		52.51	100.76	51.82
7 nm		91.20	100.76	95.08
5/4nm		171.30	~200*	126.89
3 nm		292.21*		
2nm/20A	333.33			
Data from Wikichip, Different Fabs may have different counting methodologies * Estimated Logic Density				

- Source: https://www.anandtech.com/show/16656/ibm-creates-first-2nm-chip

The Smallest Possible IC Structures

\checkmark From previous slide we can see atoms range from 0.05 to 0.5 nm
In order to build the tiniest structure physically possible you will likely need at least 5 atoms side by side Therefore, depending on which atom we consider we should be able to build circuit structures in the future that are between 0.25 and 2.5 nm large and on average about 1 nm but not any smaller than that
To figure out when we will reach 1 nm tech we should study if there is any regularity by which new IC production tech is made available commercially

Progression of IC production tech: "nm Law"

Year	nm
2019	7.0
2020	6.0
2021	5.1
2022	4.4
2023	3.8
2024	3.2
2025	2.8
2026	2.4
2027	2.0
2028	1.7
2029	1.5
2030	1.3
2031	1.1
2032	0.9

Proprietary. © H. Mathiesen. This material can be used by others free of charge provided that the author H. Mathiesen is
attributed and a clickable link is made visible to the location of used material on www.hmexperience.dk

1nm tech at 1 billion / mm2 by 2031

From slide 16 above we saw that IBM in 2021 announced they had build a proof-of-concept circuit using 2 nm technology with a transistor density of 333 million per mm2
To go from proof-of-concept to mass market production takes several years
The "nm Law" derived above predicts that in 2027 we will see mass market applications such as smart phones build using 2 nm ICs
That nm Law also predict that by 2031/2032 we will see mass market ICs build with 1 nm technology
It is reasonably to expect that the $\mathbf{1 ~ n m}$ mass market computational ICs made in 2031 will have a transistor density of about 1 billion transistors per mm 2
The logic of assuming 1 billion transistors per $\mathbf{m m 2}$ for 1 nm tech is that you can fit $4,1 \mathrm{~nm}$ squares on each 2 nm square so multiply the 333 million transistors IBM got on their 2 nm tech by 4 and then subtract some overhead and we get about 1 billion transistors
Note that 1 billion transistors / mm2 is about 10x of what we got in a new iPhone in 2022

Data-storing ICs can be stacked

However, 2031 is not the end for Moore's Law regarding data-storing ICs Unlike, computational and electronic ICs, data-storing ICs can be stacked in multiple layers because their thermal/heat creation are many orders of magnitude less than that of computational ICs
Computational electronic ICs cannot be stacked because the extra heat generated by adding another layer of circuits on top of the first would lead to self destruction and meltdown when turned on

Note that slide 6 above showed that computational ICs use between 0.1 to 0.8 watt per mm 2 to run or nearly 10 to 80 watt in 1 cm 2 (a thumbnail) a few nms thick!!
This is a lot of energy in a very small space so no wonder heat is a big issue for computational ICs

End of Moore's Law for Data-storing ICs?

To estimate when Moore's law will end for data-storing ICs note that slide 6 and 11 showed mass market state-of-the art Micron based microSD cards will be available in 2023 using 16 nm tech and a single layer transistor density of 21 million/mm2

Assuming 5 years between each 50% reduction in nm production tech it will take 20 years ($16,8,4,2,1$) from 2023 or until 2043 before data-storing ICs reach the 1 nm minimum limit with a transistor density of 1 billion per mm2

We can also use the previously deducted "nm Law" to calculate the time Moore's law will end for data-storing ICs

This "nm Law" will give us 2041 as the year Moore's Law end for data-storing ICs which is close enough to consider the above assumptions validated as likely to be true

Progression of IC production tech: "nm Law"

- Slide 18 showed how to calculate percentage growth per year -14.3\%
- Using that we calculate table above to the right.
- And we get 2041 as the year Moore's law ends for data-storing ICs

Proprietary. © H. Mathiesen. This material can be used by others free of charge provided that the author H. Mathiesen is
attributed and a clickable link is made visible to the location of used material on www.hmexperience.dk

16 trillion transistors / mm3 by 2043

In order to estimate maximum transistor density per mm3 (cubic mm) in 2043 we would first need to take the square root of 1 billion transistors 31,622=(1,000,000,000)^0.5
That compares to 31,622 layers per mm. Assuming an overhead of 50\% for supporting structures (dies, cooling and other stuff) it could fit 15,811 layers of 1 billion transistors per layer into one mm3
Therefore, end of Moore's Law for data-storing ICs would likely be 2043 with a transistor density of 15.811 trillion transistors per mm3 or 15,811 trillion transistors per cm3!
Slide 6 above shows we need 2.666 trillion transistors to store 1TByte so a cm3 of data-storing ICs in 2043 should be expected to store 5,930 TByte= $(15,811 / 2.666)$

Comparisons: Data-storing ICs

For comparison, a typical iPhone $\mathbf{1 4}$ has 0.25TByte of date storage in $\mathbf{2 0 2 2}$ so about 24,000 times less storage than should be possible for a new iPhone in 2043 using 1cm3 of 1 nm data-storing ICs!
Moreover, the human brain has been estimated to store 2.5 petaByte of data or 2,500 Tbytes of data. This number is what Google give you right up when searching It compares to $\mathbf{3 0 0}$ years of video recording why I think this number to much too high as no human can remember their lives in detail second by second as a video can Even if we stay with 2,500 Tbytes a human brain will still store less than half of the data that 1 cm 3 of data-storing ICs should be expected to do in 2043

The human brain is on average 1,200 cm3 large so data storing capacity of ICs in 2043 will exceeds that of a human by at least 2,846 times per $\mathbf{c m} 3=(5,930$ Tbyte $/(2,500$ Tbyte /1200))
Moreover, ICs store information with 100\% accuracy for decades whereas brains are grossly erroneous at storing information and also constantly lose that information

To defend the human brain it also do computation in addition to data storage within its 1200 cm 3 of space so not a fair comparison
Indeed, computation is truly where the human brain excels

Comparisons: Computational ICs

Kurzweil [2009] estimated the human brain can do about 10,000,000 TFLOPS (10 million trillion calculations per second=10exaFLOPS) using only 20W. That is 500,000 TFLOPS/Watt!

In slide 6 above we observed only 0.35 TFLOPS/Watt for best computational IC in 2022 (Apple M1 Ultra)

Moore's Law will end for computational ICs in about 2031 with a roughly 10X improvement in transistor density and therefore also ability to parallel compute in one IC That is only 3.5 TFLOPS/W which is still far below the computational efficiency of the human brain

Another 16X can be gained from better computational designs regarding the very simple computations that neural networks require and that compares much better to the kind of computation that happens in a human brain that is a neural network by design Specifically, you gain about 16X in FLOPS speed by calculating using BF16/CFP8 rather than the FP32 standard that was used in slide 6 above

A BF16 calculation has less precision than a FP32 but that is not a limiting factor for the AI training that nearly all new supercomputers are designed to do well
So, expect computational ICs to max out at about 56 (=3.5*16) TFLOPS/Watt in 2031, still much less than the perhaps 500,000 TFLOPS/W for human brain

Kurzweil presentation [2009, slide 20]

- Fastest supercomputer in 2022 is 1.1ExaFLOPS (likely BF16): Source: https://en.wikipedia.org/wiki/List_of_fastest_computers
- Source: https://www.slideshare.net/antonioeram/raymond-kurzweil-presentation

Proprietary. © H. Mathiesen. This material can be used by others free of charge provided that the author H. Mathiesen is attributed and a clickable link is made visible to the location of used material on www.hmexperience.dk

Tesla Al day 2022

D1 Chip		
362 TFLOPs BF16/cFp8 22.6 TFLOPs ${ }_{\text {FP32 }}$ 10TBps/dir. on-Chip Bandwidth 4TBps/edge. off-Chip Bandwidth 400W TDP		$645 \mathrm{~mm}^{2}$ 7nm Technology 50 Billion Transistors 11+ Miles Of Wires

Tesla Dojo Supercomputer	$1,100,000$
1.1 ExaFLOP in terms of TFLOPS (using BF16)	400
Power consumption in watt D1 chip	2
Overhead for cooling and other stuff	3000
Number of D1 chips to make a 1.1ExaFLOP supercomputer	
Total power needed to run entire suercomputer in watt	$2,400,000$
Dojo system TFLOPS/Watt (using BF16)	$\mathbf{0 . 4 6}$
Average human brain TFLOPS/Watt	$\mathbf{5 0 0 , 0 0 0 . 0 0}$
Estimated TFLOPS/watt in 2031 at 1 nm Moore's Law End	$\mathbf{5 6 . 0 0}$

- Source: https://www.youtube.com/watch?v=ODSJsviD SU\&t=2566s (2:09:55)
- TDP is Thermal Design Power

Proprietary. © H. Mathiesen. This material can be used by others free of charge provided that the author H. Mathiesen is attributed and a clickable link is made visible to the location of used material on www.hmexperience.dk

Better efficiency with optical computational ICs

\(\left.\checkmark \quad \begin{array}{l}Fortunately, electronic ICs are not the only kind of ICs that are able to

compute data

The obvious alternative is to use optical ICs that use photons instead of

electrons to do the calculations\end{array}\right\}\)| It is obvious because photons 1) need less energy than electrons to |
| :--- |
| moved around and 2) they move faster than electrons and 3) can apply |
| numerous of wavelengths simultaneously for each optical transistor |
| thereby doing the work of multiple electronic transistors in a single |
| optical transistor |
| \checkmark | | Optical ICs should have the potential to become many orders of |
| :--- |
| magnitudes more efficient than electronic ICs at computing |

Sources for previous 5 slides

- Human brain memory: https://www.cnsnevada.com/what-is-the-memory-capacity-of-a-humanbrain/\#:~:text=As\ a\ number\%2C\ a\ \�\�\�petabyte,2.5\ million\ gigabytes\ digital\ memory.
- Human brain memory 2: https://www.scientificamerican.com/article/what-is-the-memory-capacity/
- Human brain computational power: https://neurotray.com/how-many-calculations-per-second-can-the-human-brain-do/
- Human brain computational power2: https://aiimpacts.org/brain-performance-in-flops/ (this source is better. It shows there are not much scientific consensus about how many TFLOPS a human brain has and the estimates varies ranging from 10^{12} to 10^{28} FLOPS so between 1 TFLOPS and $10,000,000,000,000,000$ TFLOPS! I have chosen to use $10,000,000$ TFLOPS or 10^{19} FLOPS which is in line with Kurzweil [2009] and Sandberg and Bostrom [2008] see below. This could be grossly wrong obviously.
- Human brain computational power3: Raymond Kurzweil presentation [2009, slide 20] https://www.slideshare.net/antonioeram/raymond-kurzweil-presentation R. Kurzweil estimate $10^{19} \mathrm{FLOPS}$ are needed to simulate a complete human brain in a supercomputer. I have trust in Kurzweil as he is well known globally and has been spot on with many predictions he has made on the progression of technology although he has also been wrong on a few.
- Human brain computational power4: Sandberg and Bostrom [2008] http://www.fhi.ox.ac.uk/brain-emulation-roadmapreport.pdf

Final observations: Another 10X might be doable

Note that even at 1 billion transistors per mm2 made using 1 nm tech each transistor on average covers $31.6 \mathrm{~nm}=\left(1 \mathrm{~mm} /\left(1,000,000,000^{\wedge} 0.5\right)\right)^{*} 1,000,000(\mathrm{~nm}$ in a mm$)$
Measured in \#of 1nm2 each transistor cover we get $31.6^{\wedge} 2=1000$ * $\mathbf{1 n m 2}$
1000 nm 2 is much larger than the $\mathbf{1 n m}$ tech used to make the transistor
One reason is that each transistor is build by many tiny features each of which could be made by 1 nm tech at the 1 nm scale

Another reason is that ICs do not only contain transistors although that is by far the most frequent component

ICs also contain resistors, capacitors, diodes, etc and all the wires to connect them
Therefore, the 1000 nm 2 are needed to include all these components that each are build on systems of 1 nm features

My point is, there is a potential for further shrinking of the space needed to build an average transistor using 1 nm tech simply by developing better component designs for the ICs both with regard to the computational and the data storing kind

On this account there is perhaps a potential for a further 10X improvement of transistor density so only $10 \mathrm{~nm}{ }^{\wedge} 2=100{ }^{*} 1 \mathrm{~nm} 2$ are needed per transistor
10X density would enable 10 billion transistors/mm2 or 1,581 trillion transistors/mm3
To achieve this 10X improvement may also take additional years after 2031 and 2043

Conclusions: 1 of 2

This presentation has argued that Moore's Law will end in 2031 with regard to computational and electronic ICs using 1 nm fabrication tech
Such ICs will have about $\mathbf{1}$ billion transistors/mm2 with a compute efficiency of $\mathbf{5 6}$ TFLOPS/Watt (using BF16)
This is 10X better transistor density and a 10X (usingFP32) to 160X (using BF16) better compute efficiency as measured from best computational ICs anno 2022 (usingFP32)
This presentation also argued that Moore's Law will end in 2043 with regard to the data-storing ICs using the 1 nm fabrication tech
Such ICs will have a transistor density of about 15.811 trillion transistors per mm3 and 1 cm 3 of data-storing ICs in 2043 should be expected to store about 5,930 Tbyte
It has further been argued that there is a potential for an additional 10X improvement from denser IC component designs at the 1 nm level so up to 10 billion transistors per mm 2 might be doable

For data-storage that would imply a 100X increase or 1,581 trillion trans./mm3!!

Conclusions: 2 of 2

HM do not know of a better future technology emerging for data-storing after the data-storing ICs likely max out in about 2043
However, it is obvious from first principles thinking that computational electronic ICs will be superseded by optical ICs that has the potential to be many orders of magnitude more compute efficient than computational electronic ICs
Another possibility to increase the compute efficiency of ICs is to use quantum computers that exploit quantum superpositions of particles to create quantum bits that subsequently are used to generate ultrafast computation
While quantum computing appears to have great potential it has not yet reached a technological maturity where any practical/useful calculation problems has been solved using a quantum computer
On the other hand, optical ICs are already in production and used in supercomputers to solve real world problems mostly in AI
Expect a forthcoming video at hmexperience.dk about optical ICs/supercomputers
You may subscribe to this video and others at the YouTube channel HMexperience

