Batteries - In debt cost and scalability analysis #22

First published May 2023

Battery cost breakdown: Current prices 2023

- 1. Table shows raw material cost at cell level in USD for a 83kWh battery (Tesla LR Model Y) for each kind of raw material used
- 2. Table cover most applied types of battery chemistries used for BEVs and energy storage
- 3. Sodium-ion battery is included in table because although not yet in mass production it has potential as it does not use lithium, cobalt, nickel or copper
- 4. Na-ion use very expensive synthetic Hard carbon and also has low energy density so still more expensive per kWh than its alternatives
- 5. LMFP battery is likely to lead use for BEVs and grid storage in coming years
- 6. LMFP has 1) lowest cost per kWh and 2) acceptable
 210Wh/kg energy density & 3) few supply chain issues

Raw materials	Price	Price	Li-ion, NMC811	Li-ion, NMC523	Li-ion, LFP	Li-ion, IMFP	Li-ion, Tesla	Na-ion
used for	USD/kg	change	Nickel 80%	Nickel 50%	Lithium iron	Lithium. Mn	NCA variant	Sodium-ion
83.15	Current	from	Manganese 10%	Manganese 20%	phosphate	iron phosphate	nickel, cobalt	CATL. BYD
kWh battery (TLR Model Y)	prices 2023	current	Cobalt 10%	Cobalt 30%	LiFePO4	LiMnFePO4	aluminium	•
Lithium carbonate Li2CO3	\$32.33	1.00	\$1,187.42	\$1,662.39	\$1,424.91	\$1,085.64	\$1,430.21	\$0.00
Sodium carbonate Na2CO3	\$0.36	1.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$11.51
Cobalt Co	\$34.93	1.00	\$242.04	\$532.48	\$0.00	\$0.00	\$215.94	\$0.00
Nickel Ni	\$24.45	1.00	\$1,321.30	\$948.63	\$0.00	\$0.00	\$1,511.35	\$0.00
Manganese Mn	\$4.62	1.00	\$32.01	\$102.42	\$0.00	\$99.98	\$0.00	\$120.02
Graphite C, for Li-ion	\$9.50	1.00	\$592.44	\$697.77	\$868.92	\$662.03	\$583.59	\$0.00
Hard carbon C, for Na-ion	\$30.00	1.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$3,118.13
Iron Fe	\$0.52	1.00	\$0.00	\$0.00	\$29.69	\$11.31	\$0.00	\$59.75
Aluminium Al	\$2.35	1.00	\$97.62	\$113.89	\$143.17	\$109.08	\$98.34	\$262.96
Copper Cu	\$8.23	1.00	\$228.10	\$228.10	\$296.53	\$225.93	\$203.51	\$0.00
Steel Fe 98%, Ma 1%	\$0.52	1.00	\$14.48	\$14.48	\$18.83	\$14.35	\$12.40	\$20.85
Plastics/other C,H,O, N, P, F			-	-	-	-	-	-
Total cell raw material cost			\$3,715.41	\$4,300.16	\$2,782.05	\$2,208.33	\$4,055.34	\$3,593.22
Cell raw material cost /kWh	Sources		\$44.68	\$51.72	\$33.46	\$26.56	\$48.77	\$43.21
Cell production cost /kWh	https://www	1.00	\$50.00	\$50.00	\$50.00	\$50.00	\$50.00	\$50.00
Battery packaging cost/kWh	https://abou	1.00	\$29.35	\$33.21	\$50.44	\$38.43	\$30.00	\$50.44
Total battery pack cost/kWh			\$124.03	\$134.93	\$133.90	\$114.99	\$128.77	\$143.65
Total cost of 83kWh battery	https://www	v.findmy	\$10,312.99	\$11,219.06	\$11,133.43	\$9,561.16	\$10,707.34	\$11,944.60
Battery cells weight in kg			302.4	342.2	519.7	396.0	309.1	519.7
Est battery pack weight in kg	71.45%	increase	518.4	586.7	891.0	678.9	530.0	891.0
Wh/kg (cells)			275.00	243.00	160.00	210.00	269.00	160.00
Percentage Wh/kg relative to	LMFP batte	ry	130.95%	115.71%	76.19%	_ 100.00%	128.10%	76.19%
Wh/I (cells)			-	-	350.00	450.00	750.00	260.00
Percentage Wh/l relative to I	LMFP battery				77.78%	100.00%	166.67%	57.78%

Sources: Follow link below video to download spreadsheet containing clickable sources

- 7. Best strategy for auto makers is to design their BEVs to be great (270 mile range and >150kW charging) using a LMFP battery
- 8. A premium version of same BEV could be sold with nickel rich battery with 28% to 31% more range while keeping the total weight of vehicle the same so structural integrity stay the same and vehicles can be produced the same way with no need for additional crash testing

Scaling global battery industry : How much?

Required Production Increases of Solar & Batteries are Absolutely Achievable

Source: https://www.youtube.com/watch?v=bZNL 8bUz6A&t=1655s

Sustainable economy halves energy consumption

Source: https://www.youtube.com/watch?v=bZNL 8bUz6A&t=1655s

Sustainable economy also reduces needed mining

Global Mining Will Reduce in Sustainable Economy

Source: https://www.youtube.com/watch?v=bZNL 8bUz6A&t=1655s

Sustainable economy: Total requerments

Total Need for Fully Sustainable Economy

Source: https://www.youtube.com/watch?v=bZNL_8bUz6A&t=1655s

Scalability analysis: Raw material reserves

Billions of 83kWh battery packs that can be made using all global reserves of particular raw material

Raw material	Global	Price	Billion USD	Li-ion, NMC811	Li-ion, NMC523	Li-ion, LFP	Li-ion, LMFP	Li-ion, Tesla	Na-ion
used in battery	reserves	USD/kg	value of	Nickel 80%	Nickel 50%	Lithium iron	Lithium, Mn	NCA variant	Sodium-ion
	million tons	Current	global	Manganese 10%	Manganese 20%	phosphate	iron phosphate	nickel, cobalt	CATL, BYD
	in 2022	prices 2023	reserves	Cobalt 10%	Cobalt 30%	LiFePO4	LiMnFePO4	aluminium	
Lithium carbonate Li2CO3	131.73	\$32.33	\$4,259.30	3.587	2.562	2.989	3.923	2.978	NA
Sodium carbonate Na2CO3	25,000.00	\$0.36	\$8,918.28	NA	NA	NA	NA	NA	774.651
Cobalt Co	8.35	\$34.93	\$291.49	1.204	0.547	NA	NA	1.350	NA
Nickel Ni	102.07	\$24.45	\$2,495.31	1.889	2.630	NA	NA	1.651	NA
Manganese Mn	1,718.00	\$4.62	\$7,935.49	247.937	77.480	NA	79.370	NA	66.117
Graphite C, for Li-ion	330.00	\$9.50	\$3,135.00	5.292	4.493	3.608	4.735	5.372	NA
Hard carbon C, for Na-ion	NA-syntetic	\$30.00	NA	NA	NA	NA	NA	NA	NA-syntetic
Iron Fe + Steel	99,000.00	\$0.52	\$51,736.40	3,571.858	3,571.858	1,066.226	2,016.372	4,171.174	641.879
Aluminium Al	5,547.37	\$2.35	\$13,025.22	133.430	114.369	90.975	119.405	132.446	49.533
Copper Cu	870.00	\$8.23	\$7,159.89	31.389	31.389	24.145	31.691	35.182	NA
Cost of 83kWh battery pack				\$10,312.99	\$11,219.06	\$11,133.43	\$9,561.16	\$10,707.34	\$11,944.60
Total battery pack cost/kWh	ı			\$124.03	\$134.93	\$133.90	\$114.99	\$128.77	\$143.65
Wh/kg (cells)				275.00	243.00	160.00	210.00	269.00	160.00
Wh/l (cells)				-	-	350.00	450.00	750.00	260.00

Sources: Follow link below video to download spreadsheet containing clickable sources

- 1. **Table shows** global economically minable reserves of raw materials and how many billion 83kWh battery packs these reserves could make
- 2. The LMFP battery again is the winner among good energy density batteries as we can make at least 3.9 billion battery packs with lithium being the limiting factor
- 3. Nickel is worse than it looks at 1.6 billion 83kWh packs (Tesla variant) because 69% of all nickel mined currently is used for making stainless steel and demand for stainless steel is growing
- 4. Sodium-ion has zero supply chain issues but battery is still most costly and low energy density

Making 16TWh of LMFP batteries per year would cost 2 trillion USD at 115 USD/kWh but should also be enough to end use of all fossil fuels that cost 4.7 trillion USD per year

Proprietary. © H. Mathiesen. This material can be used by others free of charge provided that the author H. Mathiesen is attributed and a clickable link is made visible to the location of used material on www.hmexperience.dk

Battery packs to TWh

Billion	In terms of	Billion USD
83kWh packs	TWh	Li-ion, LMFP
0.1	8.32	\$956.12
0.2	16.63	\$1,912.23
0.4	33.26	\$3,824.47
2.0	166.30	\$19,122.33
2.9	240.00	\$27,596.87
World 2021 cu	rrent GDP	\$96,530.00
Coal (C,H) ann	ual sales	\$1,247.40
Oil (C, H) annu	\$2,201.20	
Gas (C, H) ann	\$1,274.41	
Sum global fos	sil fuel sales	\$4,723.01

Sources: Follow link below video

Long-term Li-carbonate prices

Average lithium carbonate price from 2010 to 2022

(in U.S. dollars per metric ton)

Source: https://www.statista.com/statistics/606350/battery-grade-lithium-carbonate-price/

Cost of making Li-carbonate is 30.000RMB/4260 USD/ton: https://cnevpost.com/2023/04/03/lithium-carbonate-likely-to-fall-below-rmb-100000-says-chairman-of-farasis/

Nearly 4X more lithium resources

Lithium production (2020), reserves and resources in tons

Country	Production	% of total	Reserves	% of total	Resources	% of total
Argentina	6,200	7.46%	1,900,000	7.64%	19,300,000	21.11%
Australia	40,000	48.15%	4,700,000	18.91%	6,400,000	7.00%
Austria	-	-	-	-	50,000	0.05%
Bolivia	-	-	-	-	21,000,000	22.97%
Brazil	1,900	2.29%	95,000	0.38%	470,000	0.51%
Canada	0	0.00%	530,000	2.13%	2,900,000	3.17%
Chile	18,000	21.67%	9,200,000	37.01%	9,600,000	10.50%
China	14,000	16.85%	1,500,000	6.04%	5,100,000	5.58%
Czech Republic	-	-		-	1,300,000	1.42%
DR Congo	-	-	-	-	3,000,000	3.28%
Finland	-	-	-	-	50,000	0.05%
Germany	-	-	-	-	2,700,000	2.95%
Ghana	-	-	-	-	90,000	0.10%
India	-	-	5,900,000	23.74%	5,900,000	6.45%
Kazakhstan	-	-	-	-	50,000	0.05%
Mali	-	-	-	-	700,000	0.77%
Mexico	-	-	-	-	1,700,000	1.86%
Namibia	-	-	_	-	50,000	0.05%
Peru	-	-	-	-	880,000	0.96%
Portugal	900	1.08%	60,000	0.24%	270,000	0.30%
Serbia	-	-	-	-	1,200,000	1.31%
Spain	-	-	_	-	300,000	0.33%
United States	870	1.05%	750,000	3.02%	7,900,000	8.64%
Zimbabwe	1,200	1.44%	220,000	0.89%	500,000	0.55%
World total (by Li metal)	83,070	100.00%	24,855,000	100.00%	91,410,000	100.00%
World total (Li-carbo. equivalent)	440,271		131,731,500	_	484,473,000	
Risky countries (by Li metal)	15,200	18.30%	1,720,000	6.92%	29,600,000	32.38%

Sources: Follow link below video to download spreadsheet containing clickable sources

Scalability analysis: 8.3TWh per year

Percentage of current global production to make 100 million 83kWh batteries or 8.3TWh of battery cells

Raw material	Annual global	Price	Billion USD	Li-ion, NMC811	Li-ion, NMC523	Li-ion, LFP	Li-ion, LMFP	Li-ion, Tesla	Na-ion
used in battery	production in	USD/kg	value of	Nickel 80%	Nickel 50%	Lithium iron	Lithium, Mn	NCA variant	Sodium-ion
	million tons	Current	global	Manganese 10%	Manganese 20%	phosphate	iron phosphate	nickel, cobalt	CATL, BYD
	in 2022	prices 2023	production	Cobalt 10%	Cobalt 30%	LiFePO4	LiMnFePO4	aluminium	
Lithium carbonate Li2CO3	0.6890	\$32.33	\$22.28	533.01%	746.22%	639.62%	487.33%	641.99%	0.00%
Sodium carbonate Na2CO3	58.0000	\$0.36	\$20.69	0.00%	0.00%	0.00%	0.00%	0.00%	5.56%
Cobalt Co	0.1900	\$34.93	\$6.64	364.69%	802.32%	0.00%	0.00%	325.38%	0.00%
Nickel Ni	3.3000	\$24.45	\$80.68	163.78%	117.59%	0.00%	0.00%	187.34%	0.00%
Manganese Mn	20.0900	\$4.62	\$92.80	3.45%	11.04%	0.00%	10.77%	0.00%	12.93%
Graphite C, for Li-ion	3.5000	\$9.50	\$33.25	178.18%	209.85%	261.33%	199.11%	175.51%	0.00%
Hard carbon C, for Na-ion	0.0200	\$30.00	\$0.60	0.00%	0.00%	0.00%	0.00%	0.00%	51968.75%
Iron Fe + Steel	1,951.0000	\$0.52	\$1 <i>,</i> 019.57	0.14%	0.14%	0.48%	0.25%	0.12%	0.79%
Aluminium Al	68.0000	\$2.35	\$159.66	6.11%	7.13%	8.97%	6.83%	6.16%	16.47%
Copper Cu	21.8400	\$8.23	\$179.74	12.69%	12.69%	16.50%	12.57%	11.32%	0.00%
Cost of 83kWh battery pack	c			\$10,312.99	\$11,219.06	\$11,133.43	\$9,561.16	\$10,707.34	\$11,944.60
Total battery pack cost/kW	h			\$124.03	\$134.93	\$133.90	\$114.99	\$128.77	\$143.65
Wh/kg (cells)	8.315	TWh		275.00	243.00	160.00	210.00	269.00	160.00
Wh/I (cells)				-	-	350.00	450.00	750.00	260.00

Sources: Follow link below video to download spreadsheet containing clickable sources

- 1. **Table shows** global production in million tons of particular battery raw materials and its sales value in global commodity markets
- Tabel also shows the percentage of global production it would take to make 100 million 83kWh battery packs or 8.3TWh
- 3. Note 8.3TWh is only half of needed to go 100% fossil free

- 4. Small industries like lithium, cobalt and hard carbon (<23 billion USD) are easier to scale than large industries like copper and nickel (>81 billion USD)
- 5. Again the winner for scalability is the LMFP battery that require the least increase in lithium production to happen 487% assuming all of it was used for making batteries

Battery cost breakdown: Current prices 2023

Cost breakdown analysis in USD for different battery chemistries

Raw materials	Price	Price	Li-ion, NMC811	Li-ion, NMC523	Li-ion, LFP	Li-ion, LMFP	Li-ion, Tesla	Na-ion
used for	USD/kg	change	Nickel 80%	Nickel 50%	Lithium iron	Lithium, Mn	NCA variant	Sodium-ion
83.15	Current	from	Manganese 10%	Manganese 20%	phosphate	iron phosphate	nickel, cobalt	CATL, BYD
kWh battery (TLR Model Y)	prices 2023	current	Cobalt 10%	Cobalt 30%	LiFePO4	LiMnFePO4	aluminium	
Lithium carbonate Li2CO3	\$32.33	1.00	\$1,187.42	\$1,662.39	\$1,424.91	\$1,085.64	\$1,430.21	\$0.00
Sodium carbonate Na2CO3	\$0.36	1.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$11.51
Cobalt Co	\$34.93	1.00	\$242.04	\$532.48	\$0.00	\$0.00	\$215.94	\$0.00
Nickel Ni	\$24.45	1.00	\$1,321.30	\$948.63	\$0.00	\$0.00	\$1,511.35	\$0.00
Manganese Mn	\$4.62	1.00	\$32.01	\$102.42	\$0.00	\$99.98	\$0.00	\$120.02
Graphite C, for Li-ion	\$9.50	1.00	\$592.44	\$697.77	\$868.92	\$662.03	\$583.59	\$0.00
Hard carbon C, for Na-ion	\$30.00	1.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$3,118.13
Iron Fe	\$0.52	1.00	\$0.00	\$0.00	\$29.69	\$11.31	\$0.00	\$59.75
Aluminium Al	\$2.35	1.00	\$97.62	\$113.89	\$143.17	\$109.08	\$98.34	\$262.96
Copper Cu	\$8.23	1.00	\$228.10	\$228.10	\$296.53	\$225.93	\$203.51	\$0.00
Steel Fe 98%, Ma 1%	\$0.52	1.00	\$14.48	\$14.48	\$18.83	\$14.35	\$12.40	\$20.85
Plastics/other C,H,O, N, P, F			-	-	-	-	-	-
Total cell raw material cost			\$3,715.41	\$4,300.16	\$2,782.05	\$2,208.33	\$4,055.34	\$3,593.22
Cell raw material cost /kWh	Sources		\$44.68	\$51.72	\$33.46	\$26.56	\$48.77	\$43.21
Cell production cost /kWh	https://wwv	1.00	\$50.00	\$50.00	\$50.00	\$50.00	\$50.00	\$50.00
Battery packaging cost/kWh	https://abou	1.00	\$29.35	\$33.21	\$50.44	\$38.43	\$30.00	\$50.44
Total battery pack cost/kWh			\$124.03	\$134.93	\$133.90	\$114.99	\$128.77	\$143.65
Total cost of 83kWh battery	https://wwv	v.findmy	\$10,312.99	\$11,219.06	\$11,133.43	\$9,561.16	\$10,707.34	\$11,944.60
Battery cells weight in kg			302.4	342.2	519.7	396.0	309.1	519.7
Est battery pack weight in kg	71.45%	increase	518.4	586.7	891.0	678.9	530.0	891.0
Wh/kg (cells)			275.00	243.00	160.00	210.00	269.00	160.00
Percentage Wh/kg relative to	LMFP batte	ry	130.95%	115.71%	76.19%	100.00%	128.10%	76.19%
Wh/l (cells)			-	-	350.00	450.00	750.00	260.00
Percentage Wh/I relative to I	MFP battery	,			77.78%	100.00%	166.67%	57.78%

Sources: Follow link below video to download spreadsheet containing clickable sources

Battery cost breakdown: Prices 2027-2032?

Cost breakdown analysis in USD for different battery chemistries

Raw materials	Price	Price	Li-ion, NMC811	Li-ion, NMC523	Li-ion, LFP	Li-ion, LMFP	Li-ion, Tesla	Na-ion
used for	USD/kg	change	Nickel 80%	Nickel 50%	Lithium iron	Lithium, Mn	NCA variant	Sodium-ion
83.15	Likely prices	from	Manganese 10%	Manganese 20%	phosphate	iron phosphate	nickel, cobalt	CATL, BYD
kWh battery (TLR Model Y)	2027-2032?	current	Cobalt 10%	Cobalt 30%	LiFePO4	LiMnFePO4	aluminium	
Lithium carbonate Li2CO3	\$12.93	0.40	\$474.97	\$664.96	\$569.96	\$434.26	\$572.08	\$0.00
Sodium carbonate Na2CO3	\$0.36	1.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$11.51
Cobalt Co	\$69.86	2.00	\$484.07	\$1,064.96	\$0.00	\$0.00	\$431.89	\$0.00
Nickel Ni	\$48.89	2.00	\$2,642.60	\$1,897.25	\$0.00	\$0.00	\$3,022.70	\$0.00
Manganese Mn	\$4.62	1.00	\$32.01	\$102.42	\$0.00	\$99.98	\$0.00	\$120.02
Graphite C, for Li-ion	\$11.40	1.20	\$710.93	\$837.32	\$1,042.70	\$794.44	\$700.30	\$0.00
Hard carbon C, for Na-ion	\$15.00	0.50	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$1,559.06
Iron Fe	\$0.52	1.00	\$0.00	\$0.00	\$29.69	\$11.31	\$0.00	\$59.75
Aluminium Al	\$2.35	1.00	\$97.62	\$113.89	\$143.17	\$109.08	\$98.34	\$262.96
Copper Cu	\$12.34	1.50	\$342.15	\$342.15	\$444.80	\$338.89	\$305.27	\$0.00
Steel Fe 98%, Ma 1%	\$0.52	1.00	\$14.48	\$14.48	\$18.83	\$14.35	\$12.40	\$20.85
Plastics/other C,H,O, N, P, F			-	-	-	-	-	-
Total cell raw material cost			\$4,798.83	\$5,037.43	\$2,249.16	\$1,802.31	\$5,142.99	\$2,034.16
Cell raw material cost /kWh	Sources		\$57.71	\$60.58	\$27.05	\$21.68	\$61.85	\$24.46
Cell production cost /kWh	https://wwv	0.70	\$35.00	\$35.00	\$35.00	\$35.00	\$35.00	\$35.00
Battery packaging cost/kWh	https://abou	0.70	\$20.54	\$23.25	\$35.31	\$26.90	\$21.00	\$35.31
Total battery pack cost/kWh			\$113.25	\$118.83	\$97.36	\$83.58	\$117.85	\$94.77
Total cost of 83kWh battery	https://wwv	v.findmy	\$9,417.14	\$9,880.66	\$8,095.12	\$6,949.30	\$9,799.39	\$7,880.12
Battery cells weight in kg			302.4	342.2	519.7	396.0	309.1	519.7
Est battery pack weight in kg	71.45%	increase	518.4	586.7	891.0	678.9	530.0	891.0
Wh/kg (cells)			275.00	243.00	160.00	210.00	269.00	160.00
Percentage Wh/kg relative to	LMFP batte	ry	130.95%	115.71%	76.19%	100.00%	128.10%	76.19%
Wh/I (cells)			-	-	350.00	450.00	750.00	260.00
Percentage Wh/I relative to L	MFP battery				77.78%	100.00%	166.67%	57.78%

Sources: Follow link below video to download spreadsheet containing clickable sources

Battery cost breakdown: Prices from 2033?

Cost breakdown analysis in USD for different battery chemistries

Raw materials	Price	Price	Li-ion, NMC811	Li-ion, NMC523	Li-ion, LFP	Li-ion, LMFP	Li-ion, Tesla	Na-ion
used for	USD/kg	change	Nickel 80%	Nickel 50%	Lithium iron	Lithium, Mn	NCA variant	Sodium-ion
83.15	Likely prices	from	Manganese 10%	Manganese 20%	phosphate	iron phosphate	nickel, cobalt	CATL, BYD
kWh battery (TLR Model Y)	from 2033	current	Cobalt 10%	Cobalt 30%	LiFePO4	LiMnFePO4	aluminium	
Lithium carbonate Li2CO3	\$4.85	0.15	\$178.11	\$249.36	\$213.74	\$162.85	\$214.53	\$0.00
Sodium carbonate Na2CO3	\$0.36	1.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$11.51
Cobalt Co	\$69.86	2.00	\$484.07	\$1,064.96	\$0.00	\$0.00	\$431.89	\$0.00
Nickel Ni	\$48.89	2.00	\$2,642.60	\$1,897.25	\$0.00	\$0.00	\$3,022.70	\$0.00
Manganese Mn	\$3.70	0.80	\$25.60	\$81.94	\$0.00	\$79.98	\$0.00	\$96.02
Graphite C, for Li-ion	\$7.60	0.80	\$473.96	\$558.21	\$695.13	\$529.63	\$466.87	\$0.00
Hard carbon C, for Na-ion	\$9.90	0.33	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$1,028.98
Iron Fe	\$0.42	0.80	\$0.00	\$0.00	\$23.75	\$9.05	\$0.00	\$47.80
Aluminium Al	\$1.88	0.80	\$78.09	\$91.11	\$114.54	\$87.27	\$78.68	\$210.37
Copper Cu	\$8.23	1.00	\$228.10	\$228.10	\$296.53	\$225.93	\$203.51	\$0.00
Steel Fe 98%, Ma 1%	\$0.42	0.80	\$11.59	\$11.59	\$15.06	\$11.48	\$9.92	\$16.68
Plastics/other C,H,O, N, P, F			-	-	-	-	-	-
Total cell raw material cost			\$4,122.13	\$4,182.52	\$1,358.76	\$1,106.18	\$4,428.10	\$1,411.36
Cell raw material cost /kWh	Sources		\$49.57	\$50.30	\$16.34	\$13.30	\$53.25	\$16.97
Cell production cost /kWh	https://www	0.50	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00
Battery packaging cost/kWh	https://abou	0.50	\$14.67	\$16.60	\$25.22	\$19.21	\$15.00	\$25.22
Total battery pack cost/kWh			\$89.25	\$91.91	\$66.56	\$57.52	\$93.25	\$67.19
Total cost of 83kWh battery	https://www	v.findmy	\$7,420.91	\$7,641.97	\$5,534.45	\$4,782.60	\$7,754.10	\$5,587.05
Battery cells weight in kg			302.4	342.2	519.7	396.0	309.1	519.7
Est battery pack weight in kg	71.45%	increase	518.4	586.7	891.0	678.9	530.0	891.0
Wh/kg (cells)			275.00	243.00	160.00	210.00	269.00	160.00
Percentage Wh/kg relative to	LMFP batte	ry	130.95%	115.71%	76.19%	100.00%	128.10%	76.19%
Wh/I (cells)			-	-	350.00	450.00	750.00	260.00
Percentage Wh/I relative to L	MFP battery				77.78%	100.00%	166.67%	57.78%

Sources: Follow link below video to download spreadsheet containing clickable sources

Battery growth towards a sustainable economy

					-							
Year	Battery production	Change	Cumulated	Battery	Price USD/kWh	Battery sales	Needed lithium	Li-carbonate	Li-carbo. in % of	Cum. Li-carbo. in	Price USD/kg	Cost in B. USD
	in TWh per year	in TWh	TWh max15Y	growth	LMFP pack level	billion USD	carbonate tons	cumulated tons	2022 production	% of 2022 reserve	Li carbonate	of Li carbonate
2022	0.540		0.540		\$115	\$62	218,057	218,057	31.65%	0.17%	\$32.33	7.05
2023	0.810	0.270	1.350	50.00%	\$115	\$93	327,086	545,143	47.47%	0.41%	\$32.33	10.58
2024	1.215	0.405	2.565	50.00%	\$115	\$140	490,629	1,035,771	71.21%	0.79%	\$32.33	15.86
2025	1.823	0.608	4.388	50.00%	\$115	\$210	735,943	1,771,714	106.81%	1.34%	\$32.33	23.80
2026	2.734	0.911	7.121	50.00%	\$115	\$314	1,103,914	2,875,629	160.22%	2.18%	\$32.33	35.69
2027	4.101	1.367	11.222	50.00%	\$84	\$344	1,655,871	4,531,500	240.33%	3.44%	\$12.93	21.42
2028	6.151	2.050	17.373	50.00%	\$84	\$517	2,483,807	7,015,307	360.49%	5.33%	\$12.93	32.12
2029	8.611	2.460	25.984	40.00%	\$84	\$723	3,477,330	10,492,637	504.69%	7.97%	\$12.93	44.97
2030	11.195	2.583	37.179	30.00%	\$84	\$940	4,520,529	15,013,166	656.10%	11.40%	\$12.93	58.47
2031	13.881	2.687	51.060	24.00%	\$84	\$1,166	5,605,456	20,618,622	813.56%	15.65%	\$12.93	72.50
2032	16.102	2.221	67.163	16.00%	\$84	\$1,353	6,502,329	27,120,951	943.73%	20.59%	\$12.93	84.10
2033	16.586	0.483	83.748	3.00%	\$58	\$962	6,697,399	33,818,350	972.05%	25.67%	\$4.85	32.48
2034	17.083	0.498	100.831	3.00%	\$58	\$991	6,898,321	40,716,671	1001.21%	30.91%	\$4.85	33.46
2035	17.596	0.512	118.427	3.00%	\$58	\$1,021	7,105,270	47,821,941	1031.24%	36.30%	\$4.85	34.46
2036	18.123	0.528	136.550	3.00%	\$58	\$1,051	7,318,428	55,140,369	1062.18%	41.86%	\$4.85	35.49
2037	18.667	0.544	154.678	3.00%	\$58	\$1,083	7,537,981	62,460,294	1094.05%	47.41%	\$4.85	36.56
2038	19.227	0.560	173.095	3.00%	\$58	\$1,115	7,764,121	69,897,329	1126.87%	53.06%	\$4.85	37.66
2039	19.804	0.577	191.684	3.00%	\$58	\$1,149	7,997,044	77,403,744	1160.67%	58.76%	\$4.85	38.79
2040	20.398	0.594	210.259	3.00%	\$58	\$1,183	8,236,956	84,904,757	1195.49%	64.45%	\$4.85	39.95
2041	21.010	0.612	228.536	3.00%	\$58	\$1,219	8,484,064	92,284,907	1231.36%	70.06%	\$4.85	41.15
2042	21.640	0.630	246.075	3.00%	\$58	\$1,255	8,738,586	99,367,622	1268.30%	75.43%	\$4.85	42.38

Global battery & lithium production for fully sustainable economy at 16TWh annually and 240TWh cumulatively using LMFP

Sources: Follow link below video to download spreadsheet containing clickable sources

Sources/attribution for previous slides

- Tesla shareholder annual meeting 2023: Source: https://www.youtube.com/watch?v=bZNL_8bUz6A&t=1655s
- Cobalt has two innate properties that make it ideal for battery applications: thermal stability and high energy density: <u>https://science.howstuffworks.com/environmental/earth/geology/cobalt.htm</u>
- Global demand for batteries grow by 30 to 40% each year see HMexperience video #6: <u>https://www.youtube.com/watch?v=5ABraHH0FTo</u>
- At Tesla Battery Day Tesla use zero cobalt for their next generation high nickel lithium ion batteries (timestamp 1:09:40): https://www.youtube.com/watch?v=I6T9xIeZTds&t=4628s
- High nickel Tesla 2170 and 4680 battery cells have respectively 269 and 244 Wh/kg: <u>https://www.notebookcheck.net/Tesla-4680-vs-2170-battery-cell-test-reveals-lower-energy-density-in-the-Texas-made-Model-Y.669162.0.html</u>
- LiFePO4 by CATL at minimum 160 Wh/kg: <u>https://cleantechnica.com/2020/02/18/how-catl-lithium-iron-phosphate-batteries-could-be-leading-to-100-kwh-tesla-model-3/</u>
- Na-ion (sodium-ion) at minimum 160 Wh/kg by CATL: https://cnevpost.com/2023/04/16/chery-to-be-1st-to-adopt-catl-sodium-ion-batteries/
- LMPF battery with 240 Wh/kg to enter mass production in 2024: <u>https://cnevpost.com/2023/05/19/gotion-unveils-new-battery-Imfp-chemistry-range-1000-km/</u>
- Report on battery startups with silicon anode technology with up to 500Wh/kg: https://spectrum.ieee.org/silicon-anode-battery
- The actual cost of lithium carbonate per ton is around RMB 30,000 or 4260 USD/ton: <u>https://cnevpost.com/2023/04/03/lithium-carbonate-likely-to-fall-below-rmb-100000-says-chairman-of-farasis/</u>
- In May 2023 Elon Musk thinks we are 3 to 6 years away from creating AGI in a large data center (so 2026 to 2029) Timestamp: 58:30: https://www.youtube.com/watch?v=PDy7s1SDDn4&t=11s
- Ray Kurtzweil has predicted decades back that AGI will happen first in a large datacenter in 2029 and we will reach the AI singularity in 2045 when intelligence will be millions of times better than human intelligence and everything becomes unpredictable. Timestamp 0 and 3:20: https://www.youtube.com/watch?v=ykY69lSpDdo&t=4s
- 70% material loss for purification of natural graphite into battery grade graphite: <u>https://www.nature.com/articles/s41467-020-20380-0</u>

